Long-term safety and efficacy of extended-interval prophylaxis with recombinant factor IX Fc fusion protein (rFIXFc) in subjects with haemophilia B

K. John Pasi1; Kathelijn Fischer2; Margaret Ragni3; Beatrice Nolan4; David J. Perry5; Roshni Kulkarni6; Margareth Ozeio7; Johnny Mahlangu8; Amy D. Shapiro9; Ross I. Baker10; Carolyn M. Bennett11; Christopher Barnes12; Johannes Oldenburg13; Tadashi Matsushita14; Huixing Yuan15; Alejandra Ramirez-Santiago15; Glenn F. Pierce15; Geoffrey Allen15; Baisong Mei15

1Royal London Haemophilia Centre, Barts and The London School of Medicine and Dentistry, London, UK; 2Van Creveldkliniek, University Medical Center, Utrecht, The Netherlands; 3Hemophilia Center of Western Pennsylvania, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; 4Our Lady’s Children’s Hospital, Dublin, Ireland; 5Addenbrookes Hospital, Cambridge, UK; 6Michigan State University, East Lansing, Michigan, USA; 7INCT do Sangue Hemocentro UNICAMP, University of Campinas, Brazil; 8Haemophilia Comprehensive Care Centre, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital and NHLS, Johannesburg, South Africa; 9Indiana Hemophilia and Thrombosis Center, Indianapolis, Indiana, USA; 10Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Perth, Western Australia, Australia; 11Emory University School of Medicine, Children’s Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA; 12The Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia; 13Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Bonn, Germany; 14Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan; 15Biogen, Cambridge, Massachusetts, USA

Summary
The safety, efficacy, and prolonged half-life of recombinant factor IX Fc fusion protein (rFIXFc) were demonstrated in the Phase 3 B-LONG (adults/adolescents ≥12 years) and Kids B-LONG (children <12 years) studies of subjects with haemophilia B (≥2 IU/dl). Here, we report interim, long-term safety and efficacy data from B-YOND, the rFIXFc extension study. Eligible subjects who completed B-LONG or Kids B-LONG could enrol in B-YOND. There were four treatment groups: weekly prophylaxis (20–100 IU/kg every 7 days), individualised prophylaxis (100 IU/kg every 8–16 days), modified prophylaxis (further dosing personalisation to optimise prophylaxis), and episodic (on-demand) treatment. Subjects could change treatment groups at any point. Primary endpoint was inhibitor development. One hundred sixteen subjects enrolled in B-YOND. From the start of the parent studies to the B-YOND interim data cut, median duration of rFIXFc treatment was 39.5 months and 21.9 months among adults/adolescents and children, respectively; 68/93 (73.1 %) adults/adolescents and 9/23 (39.1 %) children had ≥100 cumulative rFIXFc exposure days. No inhibitors were observed. Median annualised bleeding rates (ABRs) were low in all prophylaxis regimens: weekly (≥12 years: 2.3; <6 years: 0.0; 6 to <12 years: 2.7); individualised (≥12 years: 2.3; 6 to <12 years: 2.4), and modified (≥12 years: 2.4). One or two infusions were sufficient to control 97% (adults/adolescents) and 95% (children) of bleeding episodes. Interim data from B-YOND are consistent with data from B-LONG and Kids B-LONG, and confirm the long-term safety of rFIXFc, absence of inhibitors, and maintenance of low ABRs with prophylactic dosing every 1–2 weeks.

Keywords
Factor IX, haemophilia, prophylaxis, recombinant fusion proteins

Introduction
Severe haemophilia B is characterised by spontaneous and traumatic bleeding into joints and muscles that results in pain, decreased mobility, and disability (1, 2). Prophylactic treatment with replacement coagulation factor IX (FIX) has been shown to reduce the frequency of bleeding episodes while improving joint outcomes and quality of life, particularly when prophylaxis is initiated early in life (1, 3–5). However, conventional prophylaxis regimens with plasma-derived FIX or recombinant FIX products typically require two to three intravenous infusions per week to prevent bleeding (1, 6). The time commitment involved for prophylaxis, the interference of prophylactic infusions with daily activities, and difficulties with vascular access in young children are often cited as barriers to adherence to a prophylactic regimen (7–10). A FIX product that requires fewer infusions to maintain a threshold factor activity level that is protective against bleeding may alleviate some of the burden of treatment and improve adherence and clinical outcome (11).

Recombinant FIX Fc fusion protein (rFIXFc) was developed to prolong the half-life of FIX, in order to reduce prophylactic infu-
The Fc portion of rFIXFc binds to the neonatal Fc receptor and utilises the endogenous IgG recycling pathway to delay lysosomal degradation of IgG and Fc fusion proteins, cycling them back into the circulation (12). The safety, efficacy, and prolonged half-life of rFIXFc were demonstrated in previously treated adults, adolescents, and children with haemophilia B in the phase 3 B-LONG (15–17) and Kids B-LONG (18) studies. Here, we report on an interim data cut of the ongoing rFIXFc extension study, B-YOND (ClinicalTrials.gov Identifier: NCT01425723), which evaluates the long-term safety of rFIXFc and its efficacy in the prevention and treatment of bleeding episodes in subjects with haemophilia B.

Materials and methods

Study design

B-YOND is an open-label, nonrandomised extension study. Previously treated male subjects with haemophilia B (≤2 IU/dl endogenous FIX activity) who completed the Phase 3 B-LONG (≥12 years of age) or Kids B-LONG (<12 years of age) studies were eligible for enrolment. Key eligibility criteria for the parent studies were as follows: B-LONG study subjects were ≥12 years of age, had no history of or currently detectable inhibitors, and prior to enrollment in B-LONG had been on a prophylactic treatment regimen or had a history of ≥8 bleeding episodes in the previous year and had ≥100 exposure days (EDs) to replacement FIX (see supplement of primary manuscript (15) for complete eligibility criteria). Kids B-LONG study subjects were <12 years of age, had no history of or currently detectable inhibitors, and prior to enrollment in Kids B-LONG had ≥50 EDs to replacement FIX (see Supplemental Material for additional eligibility criteria). For this interim analysis, the data cut date was October 17, 2014.

B-YOND had three prophylactic treatment groups: weekly prophylaxis, individualised prophylaxis, and modified prophylaxis. Subjects in the weekly prophylaxis group were treated with 20–100 IU/kg rFIXFc every seven days and subjects in the individualised prophylaxis group received 100 IU/kg rFIXFc every eight to 16 days, with dosing based on the subject’s clinical profile observed in the parent study and individual pharmacokinetic (PK) profile, trough, and/or peak (recovery) values. The third prophylaxis...
group, modified prophylaxis, allowed investigators to further personalise dosing to achieve optimal prophylaxis (for details see Suppl. Material, available online at www.thrombosis-online.com). The study also had an episodic (on-demand) treatment group, in which dosing was based on the subject’s clinical condition and the type and severity of bleeding. Subjects of any age could participate in any of the prophylaxis treatment groups; however, the episodic treatment group was available only to subjects aged ≥12 years. The protocol permitted subjects to change treatment groups at the time of enrolment into the extension study or at any time during the study. Detailed methods for perioperative management with rFIXFc have been published (16).

Outcome measures

The primary endpoint of the study was development of inhibitors (neutralising antibodies). A positive inhibitor result was defined as a neutralising antibody value ≥0.6 BU/ml, measured by a Nijmegen-modified Bethesda assay at a central laboratory, and confirmed on retesting within two to four weeks per European Medicines Agency guidelines (19). Subjects were tested for inhibitor formation at each clinic visit (i.e. approximately every six months). Additional visits could be conducted to perform inhibitor testing as needed during 10–15 EDs, 50–75 EDs, and after achieving 100 EDs.

Figure 2: Change in treatment group from end of parent study ([A], B-LONG; [B], Kids B-LONG) to the B-YOND interim data cut.

- **Group A**
 - One subject in the weekly prophylaxis group at the start of B-YOND switched to the individualised prophylaxis group, then back to the weekly prophylaxis group before the interim data cut (null net change in group).
 - Two subjects began B-YOND in the individualised prophylaxis group, switched to weekly prophylaxis, then switched back to the individualised prophylaxis group before the interim data cut (null net change in group).
 - One subject in the episodic treatment group at the start of B-YOND switched to the modified prophylaxis group, then returned to the episodic treatment group before the interim data cut (null net change in group).
 - Protocol permitted subjects to change treatment regimens over the course of this extension study; therefore, subjects may be represented in more than one treatment regimen. "Total" indicates the number of subjects on the given regimen at any time from the beginning of the study to the interim data cut.
 - One subject who initially received once-weekly prophylaxis at the beginning of Kids B-LONG was dosing once every five days at the end of Kids B-LONG.

- **Group B**
 - Twenty-two subjects continued weekly prophylaxis at the end of study.
 - Three subjects continued individualised prophylaxis at the end of study.
 - Eighteen subjects continued weekly prophylaxis at the interim data cut.
Secondary endpoints included the annualised number of bleeding episodes (including spontaneous joint bleeding episodes) per subject, rFIXFc EDs per subject, rFIXFc consumption (total IU/kg per subject per year), and the subject's assessment of response to treatment of a bleeding episode. Additional outcomes included the incidence of adverse events (AEs), the number of infusions and dose per infusion needed to control a bleeding episode, and the assessment of haemostatic response in subjects undergoing major surgery. FIX activity was measured using the one-stage aPTT clotting assay and performed at a central laboratory.

Table 1: Summary of adverse events during B-YOND (≥5 % in either study population).

<table>
<thead>
<tr>
<th>AEs</th>
<th>Parent study</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B-LONG (N = 93)</td>
<td>Kids B-LONG (N = 23)</td>
</tr>
<tr>
<td>Subjects who experienced ≥1 AE, n (%)</td>
<td>71 (76.3)</td>
<td>17 (73.9)</td>
</tr>
<tr>
<td>Headache</td>
<td>13 (14.0)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>9 (9.7)</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Fall</td>
<td>4 (4.3)</td>
<td>5 (21.7)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>7 (7.5)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>6 (6.5)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>Influenza</td>
<td>6 (6.5)</td>
<td>0</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>4 (4.3)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Haematuria</td>
<td>5 (5.4)</td>
<td>0</td>
</tr>
<tr>
<td>Hypertension</td>
<td>5 (5.4)</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>5 (5.4)</td>
<td>0</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>3 (3.2)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>2 (2.2)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Seasonal allergy</td>
<td>2 (2.2)</td>
<td>3 (13.0)</td>
</tr>
<tr>
<td>Subjects who experienced ≥1 SAE, n (%)</td>
<td>21 (22.6)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Total number of SAEs, n</td>
<td>36</td>
<td>3</td>
</tr>
</tbody>
</table>

AE, adverse event; SAE, serious adverse event; rFIXFc, recombinant factor IX Fc fusion protein. Percentages are based on the number of subjects treated with rFIXFc and exclude AEs occurring during the perioperative management period; five AEs in three subjects emerged during the perioperative management period (all were mild to moderate, and were assessed as unrelated to rFIXFc). 3Three subjects from B-LONG experienced one nonserious AE each that was assessed by the investigator as related to rFIXFc (noncardiac chest pain, haematuria, obstructive uropathy); all resolved and none led to study discontinuation. During Kids B-LONG, one subject experienced a mild, nonserious AE of decreased appetite that was considered related to rFIXFc treatment; the AE continued into the extension study and was unresolved at the time of the interim data cut. Two subjects from Kids B-LONG experienced a total of three SAEs (tonsillitis, upper limb fracture, fall); all were assessed by the investigator as unrelated to rFIXFc. One subject from B-LONG with a medical history of previous clot colic experienced an SAE of renal colic that was assessed by the investigator as related to rFIXFc treatment; the event resolved and did not lead to study discontinuation. The remaining 35 SAEs were assessed by the investigator as unrelated to rFIXFc treatment.

Results

Study population and rFIXFc exposure

At the time of the interim data cut, 116 male subjects were enrolled in B-YOND (Figure 1, Suppl. Table 1, available online at www.thrombosis-online.com). Of the 123 adults and adolescents (≥12 years of age) who had enrolled in B-LONG, 115 completed B-LONG, and 93 of these subjects (81%) enrolled in B-YOND. The median (range) age of adult/adolescent subjects at enrolment into B-YOND was 29.0 (13–63) years (Suppl. Table 1, available online at www.thrombosis-online.com). Seven adult/adolescent subjects prematurely discontinued B-YOND. The interim data cut for B-YOND occurred prior to the completion of the Kids B-LONG study; at this time, 23 of the 30 subjects enrolled in Kids B-LONG had completed the study and all (100%) enrolled in B-YOND (≤6 years of age, n = 9; 6 to <12 years of age, n = 14). The median (range) ages of paediatric subjects in the <6 years and 6 to <12 years cohorts at enrolment into B-YOND were 4.0 (3–5) years and 9.5 (7–12) years, respectively. None of the paediatric subjects discontinued the extension study prematurely.

Among adult/adolescent subjects entering B-YOND from the B-LONG prophylactic (n = 71) and episodic (n = 19) treatment arms, 29 subjects (32%) changed treatment groups at the start of or during the extension study (Figure 2A). This included nine of the 19 subjects who were being treated episodically at the end of B-LONG and changed to a prophylaxis group during B-YOND; one of these subjects switched back to episodic treatment prior to the B-YOND interim data cut. Of the 23 paediatric subjects enter-
Table 2: rFIXFc prophylactic dose and dosing interval by treatment group.

<table>
<thead>
<tr>
<th>Parent study</th>
<th>B-YOND treatment group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekly prophylaxis</td>
</tr>
<tr>
<td></td>
<td>N = 50</td>
</tr>
<tr>
<td>B-LONG</td>
<td></td>
</tr>
<tr>
<td>Average dosing interval (days), median (IQR)</td>
<td>7.0 (7.0–7.0)</td>
</tr>
<tr>
<td>Average weekly prophylactic dose (IU/kg), median (IQR)<sup>b</sup></td>
<td>49.5 (39.9–62.8)</td>
</tr>
<tr>
<td>Kids B-LONG</td>
<td><6 years of age cohort</td>
</tr>
<tr>
<td></td>
<td>Average dosing interval (days), median (IQR)</td>
</tr>
<tr>
<td></td>
<td>Average weekly prophylactic dose (IU/kg), median (IQR)<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>6 to <12 years of age cohort</td>
</tr>
<tr>
<td></td>
<td>Average dosing interval (days), median (IQR)</td>
</tr>
<tr>
<td></td>
<td>Average weekly prophylactic dose (IU/kg), median (IQR)<sup>b</sup></td>
</tr>
</tbody>
</table>

rFIXFc, recombinant factor IX Fc fusion protein; IQR, interquartile range. ^aOne subject in the modified prophylaxis group of B-LONG did not meet the definition for having an efficacy period, and thus was not included in the dosing analysis. ^bThe average prophylactic weekly dose is the total IU/kg of all eligible prophylactic doses extrapolated to a weekly amount; an eligible dose is the first of the two doses that defines the intervals not separated by a bleeding episode or surgery. ^cDuring Kids B-LONG, subject was first treated with 60–100 IU/kg weekly, then 100 IU/kg every five days; subject enrolled in the individualised prophylaxis group of B-YOND (100 IU/kg every five days), then switched to the modified prophylaxis group (50 IU/kg every five days, then twice weekly with 50 IU/kg and 100 IU/kg).

Safety overview

Among 116 subjects who completed the B-LONG or Kids B-LONG parent studies and enrolled in the extension study, all had at least one evaluable inhibitor test result during B-YOND, with no inhibitors observed; the estimated inhibitor incidence rate was 0.0% (95% confidence interval [CI], 0.0%–3.1%). Overall, these results are consistent with the parent studies, wherein no inhibitors were observed in any subjects. As of the B-YOND interim data cut, there were no reports of serious allergic reactions or anaphylaxis associated with rFIXFc, no vascular thrombotic events, and no deaths. rFIXFc was well-tolerated, with a pattern of AEs typical of the population studied (Table 1, Suppl. Table 3, available online at www.thrombosis-online.com). None of the subjects discontinued rFIXFc treatment or withdrew from the study due to an AE.

A summary of AEs during B-YOND is provided in Table 1. During B-YOND, 75.9% of subjects reported at least one AE, not including AEs emergent during the perioperative management period. The most common AEs were headache in 14 subjects (12.1%) and nasopharyngitis in 13 subjects (11.2%). The majority of AEs were considered by the investigator to be unrelated to rFIXFc treatment. Three adult/adolescent subjects experienced one nonserious AE each (noncardiac chest pain, haematuria, obstructive uropathy) that were assessed by the investigator as related to rFIXFc treatment; all three of these AEs resolved, and none led to study discontinuation. One adult/adolescent subject had experienced a mild, nonserious AE of breath odour during B-LONG, and one paediatric subject had experienced a mild, nonserious AE of decreased appetite during Kids B-LONG; these AEs were considered by the investigator to be related to rFIXFc treatment, continued into B-YOND, and were unresolved at the time of the interim data cut. A total of 39 serious AEs (SAEs) were reported in 23 subjects (19.8%) treated with rFIXFc. All SAEs were assessed by the investigator as unrelated to rFIXFc, with the exception of one SAE of renal colic in one adult/adolescent subject with a medical
history of previous clot colic; the event resolved and did not lead to study discontinuation.

Prophylactic dosing with rFIXFc

The protocol for B-YOND allowed subjects to adjust both their dose and dosing interval to optimise prophylaxis. The median dosing interval and average weekly prophylactic dose during B-YOND for each treatment group is shown in▶ Table 2.

Overall, the majority of subjects previously on a prophylactic regimen in the B-LONG and Kids B-LONG parent studies either maintained or lengthened their infusion interval during B-YOND. Fifty-nine of the 71 adult/adolescent subjects (83.1%) who were treated prophylactically during B-LONG maintained their prophylactic infusion interval during the extension study and four subjects (5.6%) lengthened their prophylactic infusion interval compared with their regimen in B-LONG (▶ Figure 3 A). Similarly, 18 of 23 paediatric subjects (78.3%) maintained their prophylactic infusion interval during B-YOND, while four subjects (17.4%) lengthened their prophylactic infusion interval compared to their regimen in Kids B-LONG. The remaining eight adult/adolescent subjects (11.3%) and one paediatric subject (4.3%) shortened their prophylactic infusion interval during B-YOND compared to their regimen during the parent study (▶ Figure 3 B). Regardless of age, the majority of subjects in B-YOND remained in the treatment group in which they had participated in the parent study. Among 46 adult/adolescent subjects participating in the weekly prophylaxis treatment group at the end of B-LONG, 37 subjects (80.4%) chose to remain in the weekly prophylaxis group at enrolment into B-YOND (▶ Figure 2 A); among 25 adult/adolescent subjects participating in the individualised prophylaxis treatment group at the end of B-LONG, 23 subjects (92.0%) chose to remain in this treatment group at enrolment into B-YOND (▶ Figure 2 A). Among the 23 paediatric subjects who enrolled in B-YOND, 22 subjects (95.7%) were dosing once weekly and one subject (4.3%) was dosing every five days at the end of Kids B-LONG. Among these 23

Figure 3: Change in infusion frequency from end of parent study to B-YOND interim data cut. Changes in prophylactic infusion frequency from the end of B-LONG [A] and Kids B-LONG [B] to the time of the B-YOND interim data cut are shown for individual subjects. The majority of these subjects had either no change to (white boxes) or lengthened (dark grey boxes) their infusion interval during B-YOND. The infusion frequency at the time of the B-YOND interim data cut is also shown for subjects previously in the episodic arm of B-LONG (n = 19). Excludes three subjects who were only in the surgery arm in B-LONG. The B-YOND interim data cut dosing interval in these three subjects was twice weekly, every four days, and every 13 days. Every 10 days, n = 3; every 14 days, n = 1.
Overall, 66.2% of subjects from B-LONG and 47.8% of subjects from Kids B-LONG had no change in their total weekly prophylactic dose during the extension study relative to their total weekly prophylactic dose at the end of the parent study. The median change in weekly prophylactic dose was 0.0 IU/kg/week for both sets of subjects.

Two Kids B-LONG subjects with an increase in total weekly prophylactic dose (10–20 IU/kg) transitioned from a once-weekly regimen in Kids B-LONG (50–60 IU/kg once weekly) to individualised interval prophylaxis in B-YOND (100 IU/kg every 10 days).
paediatric subjects, 19 subjects (82.6%) remained in the weekly prophylaxis group at enrolment into B-YOND (▶Figure 2B). The remaining four subjects (17.4%) switched to the individualised prophylaxis group at enrolment in B-YOND and were dosing every 10 to 14 days at the interim data cut (▶Figure 2B and ▶Figure 3B).

As of the B-YOND interim data cut, a total of 26 subjects had a dosing interval longer than once weekly. The median dosing inter-

![Figure 5: Summary of median (IQR) ABRs during B-YOND. Bleeding rates, including the rate of spontaneous and spontaneous joint bleeding episodes, were consistently low in all rFIXFc prophylaxis groups compared with episodic treatment. ABR, annualised bleeding rate; IQR, interquartile range. One subject from B-LONG in the modified prophylaxis group did not meet the definition for having an efficacy period, and thus was not included in the ABR analysis.](image-url)
val in the individualised prophylaxis group was 13.7 days for adult/adolescent subjects and 10.0 days for paediatric subjects aged 6 to <12 years (Table 2). Fifteen of 26 adult/adolescent subjects (57.7%) in the individualised prophylaxis treatment group at the time of the B-YOND interim data cut had a dosing interval of every 14 days or longer (Figure 3A). However, among paediatric subjects, only four subjects (17.4%) infused less frequently than once weekly; three subjects were infusing every 10 days and one subject was infusing every 14 days (Figure 3B). Considering rFIXFc dose, the median average weekly prophylactic dose was similar for subjects in the weekly and individualised prophylaxis groups (≥12 years cohort: 49.5 IU/kg and 50.2 IU/kg, respectively; 6 to <12 years cohort: 63.1 IU/kg and 66.6 IU/kg, respectively; <6 years cohort: 64.4 IU/kg for weekly prophylaxis; Table 2). Most adult/adolescent subjects maintained (66.2%) or reduced (11.3%) their weekly prophylactic dose during B-YOND; 22.5% increased their total weekly prophylactic dose (Figure 4). Most paediatric subjects maintained (47.8%) or reduced (21.7%) their weekly prophylactic dose during B-YOND; 30.4% increased their total weekly prophylactic dose (Figure 4). The median total annualised rFIXFc consumption during B-YOND in the weekly prophylaxis group was 2647.0 IU/kg for subjects aged ≥12 years and 3327.9 IU/kg and 3313.8 IU/kg for subjects aged <6 years and 6 to <12 years of age, respectively (Table 2). The median total annualised rFIXFc consumption during B-YOND in the individualised prophylaxis group was 2781.5 IU/kg for adult/adolescent subjects and 3698.2 IU/kg for paediatric subjects.

Annualised bleeding rate during B-YOND

Among adult/adolescent subjects, the overall median annualised bleeding rate (ABR) during B-YOND was similar in the weekly (2.3; n = 50), individualised (2.3; n = 30), and modified (2.4; n = 13) prophylaxis groups (Figure 5, Suppl. Table 5, available online at www.thrombosis-online.com). The median ABR in adult/adolescent subjects treated episodically with rFIXFc during B-YOND was 11.3 (n = 15); median spontaneous ABRs were also similar in the weekly, individualised, and modified prophylaxis groups (0.8, 0.7, and 0.4, respectively) and higher in subjects treated episodically (4.7). Among paediatric subjects aged <6 years (n = 9), the median ABR in the weekly prophylaxis group was 0.0. Among subjects aged 6 to <12 years, the median ABR was similar in the weekly (2.7; n = 10) and individualised (2.4; n = 5) prophylaxis groups. The one subject from the 6 to <12 years cohort who participated in the modified prophylaxis group had an ABR of 3.1. The median ABR for spontaneous bleeding episodes was 0.0 for both paediatric age cohorts.

Treatment of bleeding episodes

During B-YOND, a total of 1013 bleeding episodes occurred in 92 adult/adolescent subjects, including 752 bleeding episodes located in joints that occurred in 73 adults/adolescents. Overall, 87.3% of bleeding episodes that occurred in adult/adolescent subjects were controlled with one infusion and 97.2% with one or two infusions; the median average rFIXFc dose per infusion required to treat a bleeding episode was 46.2 (interquartile range [IQR]: 33.3–60.0) IU/kg. A total of 60 bleeding episodes occurred in 17 paediatric subjects during B-YOND, including 41 bleeding episodes located in joints that occurred in 13 paediatric subjects. In paediatric subjects, 80% of bleeding episodes were controlled with one infusion and 95% with one or two infusions; the median average rFIXFc dose per infusion to treat a bleeding episode was 57.8 (IQR: 43.2–74.9) IU/kg. Details on dosing recommendations for the treatment of bleeding episodes can be found in the Suppl. Material (available online at www.thrombosis-online.com).

Perioperative management

During B-YOND, 14 major surgeries were performed in seven adult/adolescent subjects, and included transarterial chemoembolisation (n = 3), craniosurgery (n = 2), hip replacement or repair (n = 2), arthroscopy (n = 1), installation/removal of external Ilizarov fixation (n = 1), liver transplant (n = 1), orchiectomy (n = 1), percutaneous-ablation of hepatic carcinoma (n = 1), spinal surgery (n = 1), and unilateral ankle fusion (n = 1). Additionally, four adult/adolescent subjects who underwent major surgery in the B-LONG parent study had their rehabilitation period during B-YOND. The one major surgery among paediatric subjects during B-YOND was a tonsillectomy. No unique safety concerns emerged during the perioperative period. Of the 15 major surgeries during B-YOND, 14 were assessed for haemostatic response; haemostasis was rated by the investigator/surgeon as excellent in 13 surgeries (including one liver transplant) and good in one surgery, meaning that intraoperative and postoperative blood loss were comparable to what would be expected for a subject who did not have haemophilia. All 15 major surgeries (in paediatric and adult subjects) were evaluated for rFIXFc dosing during the perioperative period. During surgery, the total rFIXFc dose (including any pre-surgery loading dose) ranged from 60.6 to 152.3 IU/kg for the 12 major surgeries for which a single infusion was required to maintain haemostasis. In addition to these 12 surgeries that required one rFIXFc infusion, one surgery did not require any rFIXFc infusion (but the subject received 110.4 IU/kg later on the day of surgery) and two surgeries required two rFIXFc infusions (with average doses per infusion of 83.3 and 89.9 IU/kg). On the day of surgery, the total rFIXFc dose ranged from 60.6 to 317.9 IU/kg (including any loading dose, infusion during surgery, and infusion later on the day of surgery [which was required for 8 surgeries]). During post-surgery Days 1 to 3, the total rFIXFc dose ranged from 59.6 to 681.8 IU/kg; on post-surgery Days 4–14, the total rFIXFc dose ranged from 76.4 to 1265 IU/kg.

Discussion

The interim data from B-YOND presented here add to the findings from the Phase 3 B-LONG (15–17) and Kids B-LONG (18) parent studies, and confirm the long-term safety and efficacy of
rFIXFc for the prevention and treatment of bleeding episodes in adults, adolescents, and children with haemophilia B. The B-YOND extension study represents the most extensive exposure to a long-acting replacement FIX product to date; from the start of the parent study to the B-YOND interim data cut, the median cumulative rFIXFc EDs was 162 in adult/adolescent subjects and 94 in paediatric subjects. The median cumulative duration of rFIXFc treatment was 39.5 months and 21.9 months from the start of B-LONG and Kids B-LONG, respectively, to the B-YOND interim data cut. No inhibitors were observed with rFIXFc treatment and the pattern of AEs was typical of the population studied. Efficacy data from both the parent studies and extension study demonstrate consistently low bleeding rates with extended-interval rFIXFc prophylaxis. In particular, the median ABRs for spontaneous bleeding episodes were <1.0 in adult/adolescent subjects and 0 in paediatric subjects treated with rFIXFc prophylaxis—as good or better than what was observed in the parent studies (15, 18).

The flexibility of the B-YOND protocol allowed subjects to make dose and dosing-interval adjustments, according to clinical needs and personal preference, to achieve optimised rFIXFc prophylaxis for individual subjects and provide a near real-world experience. Regardless of age, the majority of subjects remained in the treatment group in which they had participated in the parent study. Notably, 47% of adult/adolescent subjects treated episodically during B-LONG moved to a prophylactic treatment group during B-YOND, highlighting the appeal of prophylactic dosing with rFIXFc. Overall, the infusion interval remained stable during B-YOND and 16 adult/adolescent subjects and one paediatric subject had a dosing interval of ≥14 days at the B-YOND interim data cut. The total weekly prophylactic dose also remained consistent during B-YOND with the majority of subjects maintaining or reducing their total weekly prophylactic dose relative to the end of the parent study. Regardless of whether subjects were on a once-weekly or an individualised dosing regimen, the median average weekly prophylactic dose of rFIXFc was similar across treatment groups (~50 IU/kg in adult/adolescent subjects and ~65 IU/kg in paediatric subjects aged 6 to <12 years).

Clinical trial design in haemophilia B is associated with several inherent challenges and limitations that result from the small number of individuals affected by the disease. Although the flexibility of the B-YOND protocol was advantageous for the individualisation and optimisation of subjects’ dosing regimens and provided a near real-world setting, the movement of subjects between treatment groups during the study does introduce a measure of selection bias and complicates comparisons between pre-study and on-study data at the individual subject level. Additional study limitations include the reliance on self-reported data (in the form of patient diaries) for treatment of bleeding information and the small number of paediatric subjects in the individualised and modified prophylaxis groups.

Previously untreated patients and patients with a history of inhibitor development were excluded from the parent studies and B-YOND extension study. Therefore, the safety and efficacy of rFIXFc among these high-risk patient populations warrants future investigation. Notably, the safety of rFIXFc in previously untreated patients is currently being studied in a separate clinical trial (NCT02234310). Future studies may also investigate the potential long-term effects of rFIXFc on factors beyond haemostasis, such as immunogenicity, the ability to induce tolerance, and joint health outcomes. Finally, although imaging confirmation of joint bleeding episodes is not standard of care, if imaging can be incorporated into future practice, this may improve the diagnosis and treatment of joint bleeds.

In conclusion, the interim data reported here from the B-YOND extension study confirm the long-term safety and efficacy of rFIXFc prophylaxis in adult, adolescent, and paediatric subjects with haemophilia B, and demonstrate low ABRs with extended prophylactic dosing intervals of every one to two weeks. These results build upon the B-LONG and Kids B-LONG parent studies and B-YOND extension study suggest that prophylactic regimens with rFIXFc may be able to achieve low ABRs with similar or reduced factor consumption compared with regimens utilising conventional FIX products. Additionally, these individuals may be able to successfully transition to rFIXFc on the basis of empiric dosing strategies rather than pharmacokinetic assessment. The extended dosing intervals observed in both the parent studies and in the B-YOND extension study suggest that prophylactic regimens with rFIXFc may confer improved treatment flexibility compared with conventional FIX therapies. Thus, rFIXFc, the first in a new class of extended half-life therapies (22–24), has the potential to reduce treatment burden and improve adherence to prophylactic regimens and long-term outcomes among people with haemophilia B.

Acknowledgements

This study was funded by Biogen and Sobi. The authors are grateful to all of the patients, families, and investigators who were involved in the study.
volved in the B-YOND study. The authors also thank Elisa Tsao, PhD, from Biogen, for data analysis support and MaryEllen Carlile Klusacek, PhD, from Biogen, for providing writing support based on input from the authors. Additional editorial support was provided by Allison Michaelis, PhD, of MedEngy, and was funded by Biogen and Sobi. Biogen and Sobi reviewed and provided feedback on the paper. The authors had full editorial control of the paper and provided their final approval of all content.

Conflicts of interest
KJP: grant/research support from Octapharma, Pfizer, Biogen, and Novo Nordisk; consultant for Bayer, BPL, Octapharma, Biogen, and Pfizer. KF: grant/research support from Bayer, Wyeth/Pfizer, Baxter, and Novo Nordisk; consultant for Bayer, Baxter, Biogen, Freeline, Novo Nordisk, and Pfizer; received speaker’s fees from Bayer, Baxter, CSL Behring, Biotest, Octapharma, Pfizer, and Novo Nordisk. MR: grant/research support from Alnylam, Baxalta, Baxter Bioscience, Biogen, CSL Behring, Dimension Therapeutics, Genentech/Roche, Novo Nordisk, and SPARK; consultant for Alnylam, Baxalta, Biogen, Biomarin, Medscape, Shire, and Tacere Benitec. BN: grant/research support from Biogen and Sobi. DJP: advisory board for Novo Nordisk; consultant for Biogen and Novo Nordisk; honoraria from Biogen. RK: grant/research support from Biogen, Novo Nordisk, and Baxalta; consultant for Bayer, Baxalta, Biogen, Kedrion, Pfizer, and BPL. MO: speakers bureau for Novo Nordisk. JM: advisory boards for Amgen, Bayer, Genentech, and Novo Nordisk; research funding from Biogen, Bayer, CSL Behring and Novo Nordisk. ADS: consultant for Baxter, Novo Nordisk, and LFB Biotechnologies. RIB: grant/research support from Boehringer-Ingelheim, Bayer, Baxter, Pfizer, Daiichi Sankyo, Astellas, Novo Nordisk, and CSL Behring; consultant for Amgen, Biogen, Boehringer Ingelheim, Bayer, and Pfizer. CMB: nothing to disclose. CB: grant/research support from Bayer, Novo Nordisk, and Pfizer; advisory boards for Bayer, Baxter, and Novo Nordisk. JO: grant/research support from, and consultant and speaker for, Bayer, Baxter, Biogen, Biotest, CSL Behring, Grifols, Novo Nordisk, Octapharma, Sobi, and Pfizer. TM: honoraria from Baxter and Novo Nordisk.

HY, AR-S, BM: employees and shareholders of Biogen. GA, GFP: shareholders and former employees of Biogen. This study was funded by Biogen and Sobi.

References

21. Windyga J, Lisitschrov T, Stasshyon O, et al. Pharmacokinetics, efficacy and safety of BAX326, a novel recombinant factor IX: a prospective, controlled, multicentre phase I/III study in previously treated patients with severe (FIX level <1 %) or moderately severe (FIX level <=2%–2.9%) haemophilia B. Haemophilia 2014; 20: 15–24.